Solar Flux Emergence Simulations

نویسندگان

  • R. F. Stein
  • D. Georgobiani
چکیده

We simulate the rise through the upper convection zone and emergence through the solar surface of initially uniform, untwisted, horizontal magnetic flux, with the same entropy as the nonmagnetic plasma, that is advected into a domain 48 Mm wide by 20 Mm deep. The magnetic field is advected upward by the diverging upflows and pulled down in the downdrafts, which produces a hierarchy of loop-like structures of increasingly smaller scale as the surface is approached. There are significant differences between the behavior of fields of 10 kG and 20 or 40 kG strength at 20 Mm depth. The 10 kG fields have little effect on the convective flows and show small magnetic-buoyancy effects, reaching the surface in the typical fluid rise time from 20 Mm depth of 32 hours. 20 and 40 kG fields significantly modify the convective flows, leading to long, thin cells of ascending fluid aligned with the magnetic field and their magnetic buoyancy makes them rise to the surface faster than the fluid rise time. The 20 kG field produces a large-scale magnetic loop that as it emerges through the surface leads to the formation of a bipolar, pore-like structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Origin of Net Electric Currents in Solar Active Regions

There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other s...

متن کامل

Magnetic flux emergence in granular convection: Radiative MHD simulations and observational signatures

We study the emergence of magnetic flux from the near-surface layers of the solar convection zone into the photosphere. To model magnetic flux emergence, we carried out a set of numerical radiative magnetohydrodynamics simulations. Our simulations take into account the effects of compressibility, energy exchange via radiative transfer, and partial ionization in the equation of state. All these ...

متن کامل

A low upper limit on the subsurface rise speed of solar active regions

Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube; it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface arou...

متن کامل

Signatures of emerging subsurface structures in the Sun

The complex dynamics that lead to the emergence of active regions on the Sun are poorly understood. One possibility is that magnetic structures (flux tubes, etc.) rise from below the surface by self induction and convection that lead to the formation of active regions and sunspots on the solar surface. For space weather forecasting, one would like to detect the subsurface structures before they...

متن کامل

Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations

We present results from numerical modeling of emerging flux regions on the solar surface. The modeling was carried out by means of 3D radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which ac...

متن کامل

Solar Surface Magneto-Convection

Magneto-convection simulations on meso-granule and granule scales near the solar surface are used to study small scale dynamo activity, the emergence and disappearance of magnetic flux tubes, and the formation and evolution of micropores. From weak seed fields, convective motions produce highly intermittent magnetic fields in the intergranular lanes which collect over the boundaries of the unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010